While Model Trains

Read data blog posts.
Carefully handpicked.
Presented 3 at a time.

Why do we minimize the mean squared error?

Alex Molas

A refresher on the theory behind Mean Squared Error.

Read it!

Variance after scaling and summing: One of the most useful facts from statistics

Chris Said

"What do R2, laboratory error analysis, ensemble learning, meta-analysis, and financial portfolio risk all have in common? The answer is that they all depend on a fundamental principle of statistics that is not as widely known as it should be. Once this principle is understood, a lot of stuff starts to make more sense."

Read it!

What to consider when using text in data visualizations

Lisa Charlotte Muth

An in-depth explanation on how to use text to enhance the visual appeal and readability of visualizations.

Read it!